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ABSTRACT 

A dynamic experimental apparatus developed for supercritical fluid studies 
was used to determine the solubility of solid CC14 in supercritical CF4. An 
on-line quadrupole mass spectrometer was utilized for analysis of the effluent. 
The direct coupling of supercritical extraction with mass spectrometry offers a 
quantitative method for the direct determination of the solute mole fraction in 
the supercritical fluid. These data will broaden the data base to support the 
testing of new theoretical models for predicting supercritical behavior. As the 
critical point for CF4 is 227.6 K, these data are among the few supercritical 
solubility data available at subambient temperature. 

INTRODUCTION 

Applications of supercritical fluid technology have come to the forefront of techno- 
logical research including supercritical fluid extraction (SCFE), supercritical !hid 
chromatography, chemical reactions in supercritical fluids, and polymer fractionation. As 
a result of high energy costs and the demand for more stringent health and safety stan- 
dards, SCFE has become increasingly important as an alternative process for conven- 
tional separations in commercial processes. Some of the current applications of SCFE 
are: the decaffination of coffee and tea [l];  the deoiling of potato chips [2]; the recovery 
of vegetable oils from crushed seeds [3]; and the deasphalting of heavy oils with super- 
critical propane [4]. Other potential commerical applications for SCFE are: the removal 
of nicotine from tobacco [5]; the molecular weight fractionation of polymer mixtures [6]; 
and the removal of organic chemicals from fermentation broths [7]. Perhaps the greatest 
potential of SCFE lies in the recovery of valuable products produced from bioprocesses. 
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These products are often present in low concentrations. Product recovery is cost-intensive 
and technically difficult accounting for as much as 80% of the expense of an antibiotic 
production operation [8]. For example, many antibiotic or biological compound separa- 
tions require: 

1) 60-1 00 processing stages using liquid-liquid extraction (LLE) 
2) a difficult precipitation or an expensive distillation to recover the antibiotic 
from the solvent 
3) many toxic LLE solvents necessitate extensive and expensive washing pro- 
cedures for safety before use 

SCFE offers considerable flexibility for an effective separation through controlling 
pressure, temperature, and choice of solvents. Supercritical fluid extraction exploits the 
pressure-density relationships of the critical region to allow fluids like CF, to function as 
solvents. Figure 1 is a phase diagram of reduced density vs. reduced pressure for COz 
discussed by many authors, e.g. Williams [9], Giddings et al. [ 101 and Schneider [ 111. 
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Fig. 1. Phase diagram showing supercritical region. 

The shaded area is the critical region where the densities are acceptable for SCFE. This 
region lies just above the critical temperature (T, = 1.0 isotherm) and below moderate 
temperatures (T,  = 1.1 isotherm). Here in this flat region small changes in pressure result 
in large changes of volume or density. This increase to liquid-like density allows a 
supercritical fluid to be an effective solvent. SCFE thus offers these advantages over 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
2
:
4
8
 
2
5
 
J
a
n
u
a
r
y
 
2
0
1
1



SUPERCRITICAL SOLUBILITY OF CARBON TETRACHLORIDE 2035 

conventional solvents: 
1) combines gas like transport properties with liquid like solvent powers; 
2) offers moderate operating temperature; 
3) utilizes non-toxic gases as solvents; 
4) dissolves non-volatiles; and 
5 )  provides for efficient product recovery [6]. 

From Table 1 [12] one can compare the physicochemical properties of supercritical 
fluid phases to those of gases and liquids. The enhanced solvent power of up to ten ord- 
ers of magnitude in supercritical fluids is quite similar to that of liquids. The density of 
the supercritical fluid phase is much closer to that of a liquid; however, the binary 
diffusion coefficients and viscosities resemble those of compressed gases. Most of these 
phenomena are favorable for SCFE with respect to mass transfer. 

Table 1. Properties of Gas, Supercritical, and Liquid Phases 
Properties Gas (latm) SCF Phase Liquid 
density (g/cm 3, 10-3 0.3 1 .o 
difhsivity (cm*/s) lo-’ 1 0 - ~  to lo4 
viscosity (g/cm.s) lo4 10-3 to 104 10-2 

EXPERIMENTAL 

Many extraction devices are described in literature. They are classified as either 
dynamic (flow type) or static apparatuses [6]. In this experiment we were interested only 
in the equilibrium composition of the solute rich supercritical gas phase. Thus a flow 
type apparatus was chosen because: 

1) off-the-shelf equipment may be used; 
2) a straight forward sampling procedure may be used; and 
3) reasonably large amounts of solubility data can be obtained rapidly and 
xeproducibly [6]. 

Most extraction devices are provided with a trap allowing quantitative recovery of 
solute during a measured extraction time. The usual methods for determining solubility 
are to weigh trapped material [13- 171 or to dissolve and analyze the trapped material 
[18]. More elegant methods of on-line analysis exist. Direct coupling of SCFE to gas 
chromatography [19] and to HPLC [20] have been described. This study presents another 
alternative of on-line analysis - mass spectrometry different than that discussed in 
SCF-MS interface [21]. In addition this study is among the few supercritical solubility 
studies at subambient temperature. 

Materials - Tetrafluoromethane, CF4, was obtained from Air Products and Chemicals, 
Inc. in standard cylinders with stated purity of 99.9%; the CF4 was used without further 
processing. Tetrachloromethane, E l 4 ,  was obtained from Fisher Scientific as Certified A. 
C. S. grade. The CC14 was frozen with liquid nitrogen, crushed. and loaded as a solid 
into the cold equilibrium cell which was then closed and maintained near liquid nitrogen 
temperature until installation in the apparatus. Handling of CC14 from the bottle to the 
closed equilibrium cell was performed in a dry-box to prevent contamination by mois- 
ture. 
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Pressurizing system and extraction column - The apparatus used in this study was a 
single pass flow system shown schematically in Figure 2. CF4 from a standard cylinder 
is compressed with a Sprague air-driven booster compressor and held in a 300 cm3 
Autoclave Engineen, Inc. vessel. CF, flows from this supply via a high pressure regula- 
tor, R1, to equipment within a temperature-conmlled enclosure. 

The maximum extraction pressure is limited to 415 bar by the booster compressor, 
BC, and the extraction temperature can be varied from ambient temperature to about 210 
K. Normal operating conditions were between 15 and 315 bar and 250.2 K (m.p. of 
CC14) to 226.7 K (critical temperature of CF,). 

The temperature-controlled enclosure is an insulated, doubled-walled box cooled by 
vaporized liquid nitrogen. A small internal blower circulates the cold nitrogen within the 
enclosure. A Foxboro control unit regulates the amount of cold nitrogen entering the 
cnclosure from an input provided by a thermocouple suspended in the air bath. 

The CF4 equilibrated to the enclosure temperature by passing through 20 feet of 
coiled tubing prior to entering the column. The CF4 then passes through the column at a 
flow rate slow enough to ensure equilibrium (approximately 1 cm/min at moderate pres- 
sures (135 bar). The column is a stainless steel tube (19 cm long, 0.84 cm ID) containing 
a packed bed of solid CCI,. At each end and every 3.75 cm a glass wool pad was placed 
to prevent entrainment and channeling. 

A split, cylindrical copper block of 12 cm OD is placed around the column to 
ensure temperature uniformity. Column temperature is monitored by two chromeVgold 
(0.07 wt% iron) thermocouples inserted in the ends of the block. These thermocouples 
were accurate to a . 1  K. They were calibrated repeatedly at the normal boiling point of 
nitrogen and the melting point of ice. 

Expansion and analysis - The solute-rich CF4 is expanded to atmospheric pressure 
across a flow control valve, FCV. Heat is applied to the valve to prevent clogging of the 
valve by frozen CC14 or solute precipitation. The flow rate is observed on a Hastings 
flow meter, FM, which controls the FCV. Typical Row rates were between 0.03 to 0.06 
standard liters per minute to ensure column equilibrium (see Figure 3). 

The analysis principle is simple. When the equilibrium of supercritical CF4- CC1,, is 
reached, the effluent is diverted to the mass spectrometer. In order to cnsure that CC14 
did not condense in the low pressure tubing, heating tape was wrapped around the tubing 
to maintain a temperature above the boiling point of CCI,, 349.7 K. The effluent was 
admitted through a double orifice assembly (see Figure 4) reducing the pressure to 
approximately 3 Tom. This was to ensure laminar flow, hence representative sampling, 
prior to entering the HVC of the quadruple mass spectrometer. A UTI Model IOOC 
quadruple mass spectrometer was utilized in this experiment with the following optim- 
ized instrument settings: emission current- 2.20 ma, focus voltage- 20 v, ion energy- 15 
v, electron energy- 70 v, and emission current (Total Pressure mode). 0.41 ma. 
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Typical MS operational settings were Faraday Cup mode at lo-'* amps full scale 
and a MS pressure o f  1.4x10-6 Torr. Data were recorded on a strip chart recorder. 
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Fig. 4. Double orifice sample inlet to MS. 
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CALIBRATION AND INTERPRETATIO N 

A 303.4 ml cylinder was evacuated and flushed three times with CF4. The cylinder 
was then charged to 2.6k0.1 psig. Using a gas chromatograph syringe a precise amount of 
CC14 (5-20p.l) was injected. After heating to ensure no CC14 was in a liquid phase and 
thermal mixing for 2 24 h, the cylinder was opened to the evacuated low pressure side of 
the apparatus. MS data were taken directly. The 1.40x10-’* amp point was repeated and 
found to be within 1.0%. 

If the detector signal is linear, the solubility x is given by the relation 
x = ( I / P ) x ( C / ( I / P ) )  where I / P  is the ion current normalized by the MS pressure and 
C / ( I / P )  is a constant. Figure 5 is the calibration curve for the system at 1.38x10-6 Torr. 
Although it is essentially linear in the region where x > 0.005, an excellent fit is provided 
by the cubic polynomial equation (1). 

(1) x = a0 + U l ( l / P )  + az(I /P)Z + a,(I /P)3 

Mole Fraction (-) 
Fig. 5. Mass spectrometer calibration curve. 

At <lo-’ Torr the MS was expected to be linear with respect to pressure; however, 
it was found to be nonlinear such that a 3-fold increase in pressure resulted in a 5-fold 
increase in ion current. The pressure calibration shown in Figure 6 was used to correct 
ion current at any pressure to the pressure of the calibration curve in order to calculate 
the mole fraction, x . 

The CC14--cF4 system proved very easy to interpret. [22] Figure 7 is the mass 
spectrum of CC14 overlayed on that of CF,. The distinct triplet at AMU’s 117, 119, and 
121 provided the fingerprint for determining the mole fraction of the solute. Of the three 
peaks the 117 AMU was the largest from the splitting pattern of the MS and calculations 
are based on its amplitude. 
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n 

MS Pressure (1 0-6Torr) 
Fig. 6. Pressure correction for MS. 
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Fig. 7. Mass spectra of CC14 and CF4 
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RESULTS AND DISCUSSION 

The apparatus was used to measure carbon tetrachloride solubility in supercritical 
CF, at four different temperatures. For the two isotherms displayed (244 and 249 K) the 
138 bar p i n t s  were repeated three times and found to be with in f l . O %  of each other. 
Two other isotherms (239 and 234 K) were not reproducible and thus are not presented. 
It is believed that a third (liquid) phase was being formed at the lower temperatures, 
complicating the operation and the interpretation of results. 

Figures 8 and 9 represent two different ways of displaying supercritical solubility 
data. The enhancement factor, E ,  is the extent to which pressure enhances the solubility 
of a solid in the gas compared to the solubility calculated from the ideal gas expression 
xi&., = psa'/P. The enhancement factor (E = xohP/psa') was calculated using equilibrium 
vapor pressure for solid CCI, from the International Critical Tables [23]. 

The shape of the curves is common. However, as density and pressure approach 
zero, InE should also approach zero. The difference between this ideal and the actual 
experimental results can be attributed to the error in the nonlinearity of ion current vs. x 
at low mole fractions. 

Coupled SCFE-MS provides a new approach to the extraction and analysis of 
SCFE. Though this technique was applied to a simple binary mixture it can be applied to 
multicomponent mixtures as well. If each compound has a characteristic AMU ion frag- 
ment, both inorganic and organic compounds can be studied by direct coupling which 
yields easy to interpretate spectra and quantitative measurement of the analyzed species. 
The apparatus also provided a means for conducting low temperature extractions. 

n x 
c W 

d 

- 7 1  ,,.,!.I , , ,  , I ,  , ,  , I , ,  , , I  , , ,  , I ,  , ,  , I , ,  , I  . .  ..._.. 
244.0 K -8 

0 so 100 150 200 250 300 350 -9 

Pressure (bar) 
Fig. 8. Solubility vs. pressure at 244 and 249 K 
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n 

3 

Pressure (bar) 
Fig. 9. Enhancement factor vs. density at 244 and 249 K 
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